Dimerization of CtIP, a BRCA1- and CtBP-interacting protein, is mediated by an N-terminal coiled-coil motif.
نویسندگان
چکیده
CtIP is a transcriptional co-regulator that binds a number of proteins involved in cell cycle control and cell development, such as CtBP (C terminus-binding protein), BRCA1 (breast cancer-associated protein-1), and LMO4 (LIM-only protein-4). The only recognizable structural motifs within CtIP are two putative coiled-coil domains located near the N and C termini of the protein. We now show that the N-terminal coiled coil (residues 45-160), but not the C-terminal coiled coil, mediates homodimerization of CtIP in mammalian 293T cells. The N-terminal coiled coil did not facilitate binding to LMO4 and BRCA1 proteins in these cells. A protease-resistant domain (residues 27-168) that minimally encompasses the putative N-terminal coiled coil was identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. This region is predicted to contain two smaller coiled-coil regions. The CtIP-(45-160) dimerization domain is helical and dimeric, indicating that the domain does form a coiled coil. The two smaller domains, CtIP-(45-92) and CtIP-(93-160), also formed dimers of lower binding affinity, but with less helical content than the longer peptide. The hydrodynamic radius of CtIP-(45-160) is the same as those of CtIP-(45-92) and CtIP-(93-160), implying that CtIP-(45-160) does not form a single long coiled coil, but a more compact structure involving homodimerization of the two smaller coiled coils, which fold back as a four-helix bundle or other compact structure. These results suggest a specific model for CtIP homodimerization via its N terminus and contribute to an improved understanding of how this protein might assemble other factors required for its role as a transcriptional corepressor.
منابع مشابه
CtIP protein dimerization is critical for its recruitment to chromosomal DNA double-stranded breaks.
CtIP (CtBP-interacting protein) associates with BRCA1 and the Mre11-Rad50-Nbs1 (MRN) complex and plays an essential role in homologous recombination (HR)-mediated DNA double-stranded break (DSB) repair. It has been described that CtIP forms dimers in mammalian cells, but the biological significance is not clear. In this study, we identified a conserved motif in the N terminus of CtIP, which is ...
متن کاملThe C-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression.
The BRCA1 tumor suppressor encodes a polypeptide with two recognizable protein motifs: a RING domain near the N terminus and two tandem BRCT domains at the C terminus. Studies of tumor-associated mutations indicate that the RING and BRCT sequences are required for BRCA1-mediated tumor suppression. In addition, recent work has shown that BRCA1 is a potent regulator of RNA transcription and that ...
متن کاملCrystal Structure of Mitochondrial Fission Complex Reveals Scaffolding Function for Mitochondrial Division 1 (Mdv1) Coiled Coil*
The mitochondrial fission machinery is best understood in the yeast Saccharomyces cerevisiae, where Fis1, Mdv1, and Dnm1 are essential components. Fis1 is a mitochondrial outer membrane protein that recruits the dynamin-related GTPase Dnm1 during the fission process. This recruitment occurs via Mdv1, which binds both Fis1 and Dnm1 and therefore functions as a molecular adaptor linking the two m...
متن کاملInteraction between a cellular protein that binds to the C-terminal region of adenovirus E1A (CtBP) and a novel cellular protein is disrupted by E1A through a conserved PLDLS motif.
Adenovirus E1A proteins immortalize primary animal cells and cooperate with several other oncogenes in oncogenic transformation. These activities are primarily determined by the N-terminal half (exon 1) of E1A. Although the C-terminal half (exon 2) is also essential for some of these activities, it is dispensable for cooperative transformation with the activated T24 ras oncogene. Exon 2 negativ...
متن کاملA mechanism for Rb/p130-mediated transcription repression involving recruitment of the CtBP corepressor.
Previous work has demonstrated the critical role for transcription repression in quiescent cells through the action of E2F-Rb or E2F-p130 complexes. Recent studies have shown that at least one mechanism for this repression involves the recruitment of histone deacetylase. Nevertheless, these studies also suggest that other events likely contribute to E2F/Rb-mediated repression. Using a yeast two...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 26 شماره
صفحات -
تاریخ انتشار 2004